翻訳と辞書
Words near each other
・ Gautam Rajput
・ Gautam Rode
・ Gautam Sanyal
・ Gautam Sharma
・ Gautam Shiknis
・ Gautam Singhania
・ Gauss Moutinho Cordeiro
・ Gauss Peninsula
・ Gauss pseudospectral method
・ Gauss Research Laboratory
・ Gauss Speaker Company
・ GAUSS Srl
・ Gauss sum
・ Gauss Tower
・ Gauss' Method
Gauss's constant
・ Gauss's continued fraction
・ Gauss's diary
・ Gauss's inequality
・ Gauss's law
・ Gauss's law for gravity
・ Gauss's law for magnetism
・ Gauss's lemma
・ Gauss's lemma (number theory)
・ Gauss's lemma (polynomial)
・ Gauss's lemma (Riemannian geometry)
・ Gauss's principle of least constraint
・ Gauss's Pythagorean right triangle proposal
・ Gauss-Matuyama reversal
・ Gaussan


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Gauss's constant : ウィキペディア英語版
Gauss's constant
In mathematics, Gauss' constant, denoted by ''G'', is defined as the reciprocal of the arithmetic-geometric mean of 1 and the square root of 2:
: G = \frac)} = 0.8346268\dots.
The constant is named after Carl Friedrich Gauss, who on May 30, 1799 discovered that
: G = \frac\int_0^1\fracB( \tfrac, \tfrac)
where ''B'' denotes the beta function.
Gauss' constant should not be confused with the Gaussian gravitational constant.
==Relations to other constants==
Gauss' constant may be used to express the Gamma function at argument 1/4:
: \Gamma( \tfrac) = \sqrt
Alternatively,
: G = \frac) )^2}{2\sqrt{ 2\pi^3}}
and since π and Γ(1/4) are algebraically independent with Γ(1/4) irrational, Gauss' constant is transcendental.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Gauss's constant」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.